The Fluoro(hydrocyano)krypton(ıı) Cation [HC≡N–Kr–F]+; the First Example of a Krypton–Nitrogen Bond

Gary J. Schrobilgen

Department of Chemistry, McMaster University, Hamilton, Ontario L8S 4M1, Canada

The first example of krypton bonded to an element other than fluorine has been provided by the synthesis of the novel $[HC\equiv N-Kr-F]^+$ cation, prepared as its AsF₆⁻ salt by low-temperature reaction of HC \equiv NH⁺AsF₆⁻ with KrF₂ in HF or BrF₅ as solvent, and characterized by low-temperature Raman spectroscopy and ¹H, ¹³C, ¹⁵N, and ¹⁹F n.m.r. spectroscopy.

Numerous examples of xenon bonded to oxygen or fluorine and of xenon bonded to other highly electronegative inorganic ligands through oxygen are now known.¹ However, it is only within the last few years that the first examples of xenon bonded to an element other than fluorine or oxygen have been fully characterized. These are provided by the xenon-nitrogen bonded derivatives of the $-N(SO_2F)_2^{2-6}$ and $-N(SO_2CF_3)_2^7$ groups, and two recent reports of the XeF+ cation nitrogenbonded to HC=N and organo-nitrogen ligands (nitriles and perfluoropyridines).^{8,9} Hitherto, no examples have been reported in which krypton is bonded to an element other than fluorine.

We have recently shown that XeF⁺ forms relatively stable Lewis acid–base adduct cations with HC=N,⁸ nitriles,⁸ and several perfluoropyridines⁹ which are resistant to oxidation by XeF⁺ at low temperatures. On the basis of photoionization studies, HC=N is oxidatively the most resistant ligand among the pyridines and nitriles we have investigated thus far (first ionization potential 13.59 eV).¹⁰ In view of the estimated electron affinity of XeF⁺ (10.9 eV) and our previous success in forming the xenon(II) cation [HC=N-Xe-F]⁺ as its AsF₆⁻ salt, the synthesis of the krypton(II) analogue was undertaken. The estimated electron affinity for KrF⁺ (13.2 eV) suggested that HC=N might have at least a marginal resistance to oxidative attack by the KrF⁺ cation and that [HC=N-Kr-F]⁺ might have sufficient thermal stability to permit its spectroscopic characterization.

Direct interaction of $KrF^+AsF_6^-$ with HC=N solutions in HF or BrF_5 solvent [as used for the xenon(II) analogue] was not attempted owing to the strongly oxidizing character of the KrF^+ cation towards HC=N and BrF_5 as well as its tendency to undergo autoredox reactions in both solvents. Instead, the interaction of less reactive KrF_2 with HC=NH⁺AsF₆⁻ in HF was initially investigated. At -60 °C reaction of sparingly soluble HC=NH⁺AsF₆⁻ with KrF_2 in HF led to instantaneous deposition of a white solid which, upon warming above -50 °C, rapidly began to evolve Kr, NF₃, and CF₄ gases. This was usually followed by a violent detonation and accompanying emission of white light. When these reactions were allowed to proceed at approximately -60 °C, the mixtures could be periodically quenched to -196 °C in order to study the development of the Raman spectrum of the product. Raman spectra were recorded for the solid under HF at -196 °C with 541.5 nm excitation. ¹⁹F n.m.r. spectra were obtained by briefly warming the samples to -60 °C followed by rapid acquisition of the free induction decays with a high-field pulse instrument.

The Raman spectrum is consistent with the formation of the novel [HC=N-Kr-F]+ cation. In addition to strong lines arising from unreacted KrF₂ (465 and 122 cm⁻¹), an intense line at 560 (100) cm⁻¹ attributable to a new Kr-F stretching mode was observed. The higher frequency of this line relative to that of the difluoride (465 cm^{-1}) is consistent with a more covalent Kr-F bond and parallels Xe-F stretching frequency increases observed for F-Xe-L compounds in general and those of the HC=N and nitrile cations in particular.8 Despite the lower mass of the krypton atom, the Kr-F stretching frequency of [HC=N-Kr-F]+ is only slightly lower than the factor-group-split Xe-F stretching frequency of the xenon analogue [559 (100) and 569 (94)]8 and indicates that this Kr-F bond, like those of KrF_2 , KrF_2 , and $Kr_2F_3^+$, ¹¹ is substantially weaker than in the xenon analogue. Two C=N stretching frequencies were observed, at 2116 (8) and 2158 (41) cm⁻¹. The former is assigned to unreacted HC \equiv NH+AsF₆-, by comparison with the Raman spectrum of the pure solid. The C=N stretch at 2158 (41) cm^{-1} is assigned to the [HC=N-Kr-F]+ cation and is similar to that of [HC=N-Xe-F]+AsF₆- (2161 cm⁻¹).⁸ Vibrational bands associated with v(Kr–N), v(H–C), and δ (C=N–Kr) are expected, by analogy with $[HC\equiv N-Xe-F]^+AsF_6^-$, to be weak and/or

Species	δ(19F)/p.p.m. ^b	δ(13C) ^b	δ(15N)/p.p.m. ^b	$\delta(^{1}H)/p.p.m.^{t}$	J/Hz ^e
[HC≡N-Kr-F]⁺	99.4° (81.0)	98.5	-200.8	6.09 ^a	${}^{1}J({}^{13}C{}^{-1}N) 312$ ${}^{2}J({}^{15}N{}^{-19}F) 26$ ${}^{2}J({}^{15}N{}^{-1}H) 12.2$ ${}^{3}J({}^{19}F{}^{-13}C) 25.0$ ${}^{4}J({}^{19}F{}^{-1}H) 4.2$
KrF ₂ AsF ₆ - HF BrF ₅	63.9 (48.1) -62.6 (-69.1) ^f -192.9 (-194.4) 134.7 ^g 271.9 ^h			6.71	¹ J(¹ H– ¹⁹ F) 520(519) ² J(¹⁹ F– ¹⁹ F) 73

Table 1. N.m.r. (¹⁹F, ¹³C, ¹⁵N, and ¹H) parameters for the [HC=N-Kr-F]⁺ cation and related species.^a

^a Spectra were recorded in 4 mm (ext. diam.) FEP sample tubes at spectrometer frequencies (MHz): 235.36 (¹⁹F), 50.70 (¹⁵N), and 80.02 (¹H); BrF₅ solvent at -57 °C; values in parentheses are for spectra recorded with HF as solvent at -60 °C. ^b Samples were referenced externally at 24 °C with respect to the neat liquid references: CFCl₃ (¹⁹F), MeNO₂ (¹⁵N), and SiMe₄ (¹³C, ¹H). A positive chemical shift denotes a resonance to high frequency of the reference. ^c Krypton isotopic shifts of 0.0138 p.p.m. per a.m.u. were observed for this resonance, corresponding to fluorine directly bonded to ⁸²Kr, ⁸⁴Kr, and ⁸⁶Kr. ^d The corresponding resonance in HC=NH⁺ occurs at 5.20 p.p.m. in BrF₅ as solvent at -57 °C. ^e Measured for samples containing 99.5% ¹⁵N or 99.2% ¹³C. ^f Linewidths at half-height were 1840 (HF) and 2190 Hz (BrF₅); the AsF₆⁻ resonance in BrF₅ exhibited the saddle-shaped structure of a partially quadrupole-collapsed 1:1:1:1 quartet arising from ¹J(⁷⁵As-¹⁹F). ^g Doublet. ^h Quintet.

Figure 1. N.m.r. spectra of the [HC=N-Kr-F]⁺ cation enriched to 99.5% with ¹⁵N, in BrF₅ as solvent at -57 °C. (a) ¹⁹F Spectrum (235.36 MHz) depicting ²J(¹⁹F-¹⁵N) and ⁴J(¹⁹F-¹H) and krypton isotope shifts. Lines assigned to fluorine bonded to ⁸²Kr (11.56%), ⁸⁴Kr (56.90%), and ⁸⁶Kr (17.37%) are denoted by the krypton mass number. The innermost lines of the ⁸²Kr and ⁸⁶Kr doublets overlap their corresponding ⁸⁴Kr doublets. The isotopic shift arising from ⁸³Kr (11.53%) is not resolved; those of ⁷⁸Kr (0.35%) and ⁸⁰Kr (2.27%) are too weak to be observed. (b) ¹H Spectrum (80.02 MHz) depicting ²J(¹⁵N-¹H) and ⁴J(¹⁹F-¹H). (c) ¹⁵N Spectrum (50.70 MHz) depicting ²J(¹⁹F-¹⁵N) and ²J(¹⁵N-¹H).

broad and cannot yet be assigned with certainty. The doubly degenerate bending mode, δ (F–Kr–N), is expected to be intense but is presumably obscured by the intense KrF₂ line at 122 cm⁻¹. Frequencies associated with the octahedral anion AsF₆⁻ were observed at 684 (36) [v₁(a_{1g})], 587 (16) [v₂(e_g)], and 370 (13) cm⁻¹ [v₅(t_{2g})] (v₂ and v₅ overlap with the corresponding frequencies of unreacted HC=NH+AsF₆⁻).

The interaction of HC=NH+AsF₆⁻ and KrF₂ in BrF₅ led to a soluble product which was stable to at least -55 °C in BrF₅ with only slight decomposition. The ¹⁹F n.m.r. spectra of these solutions at -58 °C and in HF at -60 °C (Table 1) are consistent with equation (1). A new resonance in the fluorine-on-krypton(II) region [81.0 (HF) and 99.4 (BrF₅)] occurs to high frequency of unreacted KrF₂ [48.1 (HF) and $(63.9 (BrF_5))$ in both solvents. In BrF_5 this resonance is split into a doublet (4.2 Hz) attributable to the four-bond coupling 4J(19F-1H) [cf. 4J(19F-1H) 2.6 Hz for [HC=N-Xe-F]+ in HF solvent]. Like the terminal fluorine resonance of $Kr_2F_3^+$ [δ 73.6 p.p.m. $(BrF_5)^{11}$ the fluorine-on-krypton resonance of $[HC \equiv N - Kr - F]^+$ lies to high frequency of the parent fluoride resonance. The chemical shift trend suggests that the Kr-N bond is more ionic than the Kr–F bridge bond of $Kr_2F_3^+$. The ¹H spectrum recorded in BrF₅ solvent is also consistent with the formation of the [HC=N-Kr-F]+ cation. In addition to the doublet arising from HF in equation (1), a doublet (4.2 Hz) attributed to 4J(19F-1H) was observed at δ 6.09, to high frequency of the proton-on-carbon resonance of the HC=NH+ cation [δ 5.20 (BrF₅)].

$$KrF_2 + HC \equiv NH^+AsF_6^- \rightarrow [HC \equiv N-Kr-F]^+AsF_6^- + HF$$
 (1)

The structure of the [HC=N-Kr-F]+ cation in solution has been confirmed by repetition of the reaction in BrF5 with 99.5% ¹⁵N-enriched HC=NH+AsF₆⁻. The ¹⁹F and ¹H resonances exhibit new doublet splittings attributed to, ¹⁵N coupling [Figure 1(a)]. The new splitting (26 Hz) of the ¹⁹F resonance is attributed to the two-bond spin-spin coupling $^{2}J(^{19}\text{F}-^{15}\text{N})$ and is similar in magnitude to previously reported values for F-Xe-N(SO₂F)₂ [${}^{2}J({}^{19}F{}^{-15}N)$ 39.2 Hz] and [MeC=N-Xe-F]+ [${}^{2}J({}^{19}F{}^{-14}N)$ 18 Hz; ${}^{2}J({}^{19}F{}^{-15}N)$ 25 Hz (calc.)]. Krypton isotopic shifts arising from ⁸²Kr (11.56%), 84 Kr (56.90%), and 86 Kr (17.37%) are well resolved on the 19 F resonance (0.0138 p.p.m. per a.m.u.). The value compared favourably with that measured for KrF₂ in BrF₅ solvent (0.0104 p.p.m. per a.m.u.)¹² and serves as an added confirmation that the fluorine resonance arises from fluorine directly bonded to krypton. The new doublet fine structure (12.2 Hz) on the ¹H resonance of the ¹⁵N-enriched cation [Figure 1(b)] is attributed to ${}^{2}J({}^{15}N{-}^{1}H)$ [cf. ${}^{2}J({}^{15}N{-}^{1}H)$ 19.0 Hz for HC=NH+. in HF solvent]. The ¹⁵N n.m.r. spectrum consists of a well resolved doublet of doublets [Figure 1(c)] arising from ${}^{2}J({}^{19}F-{}^{15}N)$ and ${}^{2}J({}^{15}N-{}^{1}H)$, which simplifies to a doublet (26 Hz) upon broad-band ¹H decoupling, confirming the aforementioned coupling constant assignments. A 99.2% ¹³C enriched sample resulted in additional doublet splittings in the ¹H and ¹³C spectra arising from ¹ $J(^{13}C^{-1}H)$ 312 Hz and ³ $J(^{19}F^{-13}C)$ 25.0 Hz.

It is noteworthy that the resonances of both solvents displayed well resolved spin-spin couplings (Table 1) indicating that fluorine exchange is slow under the stated conditions. This, coupled with the low concentration of NF₄+ decomposition products in freshly prepared BrF₅ samples (<1%), has allowed reliable integrations of the ¹H and ¹⁹F resonances. The following relative intensities were obtained and further support the cation structure and equation (1): ¹⁹F, [HC \equiv N-Kr-F]+:HF:AsF₆-1:1:6; ¹H, [HC \equiv N-Kr-F]+:HF 1:1.

Solutions of [HC=N-Kr-F]+AsF₆⁻ in BrF₅ have withstood temperatures of -58 to -55 °C for several hours with little sign of additional decomposition. Monitoring the ¹⁹F spectra has shown that subsequent brief warmings of these solutions above -50 °C lead to rapid formation of NF₄+ [δ 218.9 p.p.m., ¹*J*(¹⁹F-¹⁴N) 229 Hz, ¹*J*(¹⁹F-¹⁵N) 320 Hz], CF₄ (-63.1 p.p.m.), and CF₃H (-79.3 p.p.m., ²*J*(¹⁹F-¹H) 79 Hz] and exchange-broadening of both HF and AsF₆⁻ resonances arising from AsF₅ formation. The HF samples also displayed weak ¹⁹F resonances attributable to NF₄+ [δ 218.9 p.p.m., ¹*J*(¹⁹F-¹⁴N) 229 Hz], NF₃ [142.9 p.p.m., ¹*J*(¹⁹F-¹⁴N) 140 Hz], CF₃H [-81.5 p.p.m., ²*J*(¹⁹F-¹H) 79 Hz], and CF₄ (-64.9 p.p.m.) as decomposition products.

Additional examples of inorganic and perfluoro-organic nitrogen bases are under investigation in this laboratory as potential electron-pair donors towards KrF⁺.

This research was sponsored by the United States Air Force Astronautics Laboratory, Edwards Air Force Base, California (Contract F49620-87-C-0049) and a Natural Sciences and Engineering Research Council of Canada operating grant.

Received, 1st March 1988; Com. 8/00838H

References

- (a) N. Bartlett and F. O. Sladky, 'Comprehensive Inorganic Chemistry,' Pergamon, New York, 1973, vol. 1, ch. 6, pp. 213-330; (b) K. Seppelt and D. Lentz, *Progr. Inorg. Chem.*, 1982, 29, 167.
- 2 D. D. DesMarteau, J. Am. Chem. Soc., 1978, 100, 6270.
- 3 D. D. DesMarteau, R. D. LeBlond, S. F. Hossain, and D. Nothe, J. Am. Chem. Soc., 1981, **103**, 7734.
- 4 J. F. Sawyer, G. J. Schrobilgen, and S. J. Sutherland, *Inorg. Chem.*, 1982, 21, 4064.
- 5 G. A. Schumacher and G. J. Schrobilgen, *Inorg. Chem.*, 1983, 22, 2178.
- 6 R. Faggiani, D. K. Kennepohl, C. J. L. Lock, and G. J. Schrobilgen, *Inorg. Chem.*, 1986, **25**, 563.
- 7 J. Foropoulos, Jr., and D. D. DesMarteau, J. Am. Chem. Soc., 1982, 104, 4260.
- 8 A. A. Emara and G. J. Schrobilgen, J. Chem. Soc., Chem. Commun., 1987, 1646.
- 9 A. A. Emara and G. J. Schrobilgen, J. Chem. Soc., Chem. Commun., 1988, 257.
- 10 V. H. Dibeler and S. K. Liston, J. Chem. Phys., 1968, 48, 4765.
- 11 R. J. Gillespie and G. J. Schrobilgen, Inorg. Chem., 1976, 15, 22.
- 12 J. C. P. Sanders and G. J. Schrobilgen, unpublished work.